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Large time behavior for a nonlocal diffusion
equation with absorption and bounded
initial data: The subcritical case
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Abstract. In this paper we continue our study of the large time behavior of the bounded solution to the nonlocal diffusion
equation with absorption{

ut = Lu − up in R
N × (0, ∞),

u(x, 0) = u0(x) in R
N,

where p > 1, u0 � 0 and bounded and

Lu(x, t) =
∫

J (x − y)
(
u(y, t) − u(x, t)

)
dy

with J ∈ C∞
0 (Bd), radially symmetric, J > 0 in Bd , with

∫
J = 1.

Our assumption on the initial datum is that 0 � u0 ∈ L∞(RN) and

|x|αu0(x) → A > 0 as |x| → ∞.

This problem was studied in [Proc. Amer. Math. Soc. 139(4) (2011), 1421–1432; Discrete Cont. Dyn. Syst. A, 31(2) (2011),
581–605] in the supercritical and critical cases p � 1 + 2/α.

In the present paper we study the subcritical case 1 < p < 1+2/α. More generally, we consider bounded nonnegative initial
data such that

|x|2/(p−1)u0(x) → ∞ as |x| → ∞
and prove that

t1/(p−1)u(x, t) →
(

1

p − 1

)1/(p−1)

as t → ∞

uniformly in |x| � k
√

t for every k > 0.
Of independent interest is our study of the positive eigenfunction of the operator L in the ball BR in the L∞ setting that we

include in Section 3.
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1. Introduction

In this paper we continue our study of the large time behavior of the solution to the nonlocal diffusion
equation with absorption{

ut = Lu − up in R
N × (0, ∞),

u(x, 0) = u0(x) in R
N,

(1.1)

where p > 1, u0 � 0 and bounded and

Lu(x, t) =
∫

J (x − y)
(
u(y, t) − u(x, t)

)
dy (1.2)

with J ∈ C∞
0 (Bd), radially symmetric, J > 0 in Bd , with

∫
J = 1.

Our assumption on the initial datum is that 0 � u0 ∈ L∞(RN) and

|x|αu0(x) → A > 0 as |x| → ∞. (1.3)

These kind of nonlocal diffusions appear in several applications such as population dynamics, disease
propagation, image enhancement, etc. (see, for instance, [1–5,8,11,18]).

When the kernel J in the nonlocal operator (1.2) satisfies the hypotheses in this paper, the long time
behavior of the solutions is closely related to that of the corresponding problem for the heat operator
with a diffusivity related to the kernel J (see, for instance, [6,9,13,15–17]).

In [15] the authors started the study of (1.1) when u0 ∈ L1(RN), in the supercritical case p > 1+2/N .
Then, in [16,17] we studied this problem under assumption (1.3).

The main question we address is what is the interplay between the parameters p, α and the dimension
N in the large time behavior of the solution.

In [16,17] the critical and supercritical cases were studied. This is, we assumed that, either u0 ∈
L1(RN) and p � 1+2/N (completing the results of [15] by considering the critical case), or 0 < α < N

and p � 1 + 2/α. Also some intermediate asymptotics for u0 involving logarithms where considered in
[17], always in the supercritical case.

In the present paper we complete our study by considering the subcritical case 1 < p < 1 + 2/α that
was left open in the previous articles.

The critical value pc = 1 + 2/α is the one that makes diffusion and absorption of the “same size”.
It is interesting to observe that this critical value depends on the size of the initial condition at infin-
ity.

In the supercritical case, diffusion wins and the reaction component disappears in the long run. In the
critical case, both diffusion and reaction remain in the time asymptotics (see [15–17]).

In the present paper we show that, in the subcritical case, only reaction remains in the large time
behavior and the solution behaves as that of the equation

ut = −up, u(1) =
(

1

p − 1

)1/(p−1)

.
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This is

t1/(p−1)u(x, t) →
(

1

p − 1

)1/(p−1)

as t → ∞ uniformly in
{|x| � k

√
t
}

(1.4)

for every k > 0.
It is interesting to observe that the final profile is independent of the initial datum u0 as long as it is

bounded and satisfies (1.3). In the critical and supercritical cases, both the constant A and the exponent
α in (1.3) intervene in the time asymptotics.

Our result is similar to the one obtained by Gmira and Véron in [12] for the heat equation with
absorption. As in [12], we get this behavior for any nonnegative and bounded initial datum u0 such that

|x|2/(p−1)u0(x) → ∞ as |x| → ∞ (1.5)

thus allowing a more general behavior of u0 at infinity than the one in (1.3).
In this paper we follow the ideas of [12] where the authors constructed subsolutions of separated

variables with the right asymptotic behavior. These subsolutions involve the positive eigenfunctions hR

of the Laplacian in the balls BR, normalized so that the ‖hR‖L∞(BR) = 1.
The authors make use of the scaling invariance of the Laplacian so that hR(x) = h1(x/R) and the

principal eigenvalue λR = R−2λ1.
One of the main differences when dealing with problem (1.1) is the lack of any scaling invariance

of the problem. Nevertheless, a parabolic scaling leads – in the limit of the scaling parameter going to
infinity – to the heat equation with diffusivity A(J ) = 1

2N

∫
J (z)|z|2 dz. And this fact explains, in a

way, the interplay between the time asymptotics of the nonlocal diffusion equation and that of the heat
equation with diffusivity A(J ), as was made clear in [17].

This scaling property was also the basis for the understanding of the behavior as |x| → ∞ of the
solution to⎧⎪⎨⎪⎩

Lφ = 0 in R
N \ Ω,

φ = 1 in Ω,

φ(x) → 0 as |x| → ∞

with Ω an open bounded set, studied in [7].
One of the main contributions of the present paper is a thorough study of the positive eigenfunction

HR to the nonlocal operator L in the ball BR with Dirichlet boundary conditions HR = 0 in R
N \ BR,

normalized so that ‖HR‖L∞ = 1.
This study was initiated in [10] where the existence of a principal eigenvalue ΛR associated to a pos-

itive eigenfunction was proved. Moreover, in [10] the authors proved that, asymptotically the principal
eigenvalue behaves as that of the Laplacian with diffusivity A(J ). This is,

R2ΛR → A(J )λ1 as R → ∞.

In [10] the authors also studied the associated eigenfunction in the L2 setting and they proved that,
after rescaling to the unit ball with an L2 normalization, one gets convergence in L2 to the positive
eigenfunction of the Laplacian in the unit ball with Dirichlet boundary conditions and unit L2-norm.
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In the present paper, due to the application to the study of the asymptotics of (1.1) we have in mind, we
are interested in a different normalization and convergence. Namely, we normalize so that the L∞-norm
is preserved and prove uniform convergence in the unit ball.

In order to get this kind of compactness, the arguments in [10] cannot be applied. Instead, we get
uniform bounds for the derivatives of the rescaled eigenfunctions H̃R(x) = HR(Rx), on smaller balls Br

with 0 < r < 1, by using an integral representation formula for HR and a precise decay in terms of R of
HR in a neighborhood of the boundary of BR. To this end, we construct an upper barrier. This barrier also
allows to get uniform smallness of the rescaled eigenfunctions and their limits in a neighborhood of ∂B1

that gives, in particular, uniform convergence in the whole ball. The uniform limit is then identified as
being h1, the positive eigenfunction of the Laplacian in the unit ball with Dirichlet boundary conditions
and unit L∞-norm.

We believe that the results concerning the eigenfunctions HR are of independent interest.
The paper is organized as follows. In Section 2 we state the results of [10] on the principal eigenvalue

of the operator L with Dirichlet boundary conditions set in the ball BR. Then, in Section 3 we perform
our study of the eigenfunctions associated to the principal eigenvalues in the L∞ setting. In Section 4 we
construct a subsolution to (1.1) by following the ideas of [12] for the heat equation. Due to the lack of
any regularizing effect of the nonlocal operator, we need to prove that infBR

u(·, t) > 0 for every R > 0,
t > 0 (Lemma 4.1). Finally, in Section 5 we prove our main result, namely that (1.4) is satisfied.

2. Definitions and preliminary results

In this section we discuss notation and basic definitions. Moreover, we state some previous results on
the first eigenvalue of the nonlocal problem with Dirichlet boundary conditions in a ball.

Let R > 0 and define the ball of radius R as

BR = {
x ∈ R

n : |x| < R
}
.

We denote by λR the first eigenvalue of the Laplacian in BR. That is, λR verifies that there is a solution
to the following problem,⎧⎪⎨⎪⎩

−�u = λRu in BR,

u = 0 on ∂BR,

u > 0 in BR.

(2.1)

We know that λR is simple. Let us call hR the associated eigenfunction satisfying

0 < hR(x) � 1 = max
x∈BR

hR(x) in BR. (2.2)

It is well known that, due to the scaling of the Laplacian there holds that, λR = R−2λ1.
We now consider the nonlocal eigenvalue problem,⎧⎪⎨⎪⎩

−Lu(x) = ΛRu(x) in BR,

u = 0 in R
N \ BR,

u > 0 in BR,

(2.3)
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where Lu(x) = ∫
J (x − y)(u(y, t) − u(x, t)) dy, J ∈ C∞

0 (Bd) radially symmetric, J > 0 in Bd and∫
J = 1.
It was proved in [10] that such an eigenvalue exists, it is simple and moreover,

ΛR ∼ A(J )
λ1

R2
as R → +∞ (2.4)

with

A(J ) = 1

2N

∫
RN

J (z)|z|2 dz. (2.5)

This is,

ΛR = A(J )
(
1 + o(1)

) λ1

R2
as R → +∞.

Consequently, the first eigenvalue ΛR for the nonlocal problem (2.3) behaves asymptotically as the
first eigenvalue λR of the Laplacian (2.1), as R tends to infinity.

Moreover, in [10] the authors proved that ΛR is given variationally as

ΛR = inf
0	=u∈L2(BR)
u=0 in Bc

R

1

2

∫∫
J (x − y)(u(x) − u(y))2 dx dy∫

u2(x) dx
.

3. Some results on the eigenfunctions

In this section we study the eigenfunctions of the nonlocal problem in the ball BR.
The eigenfunction problem was studied in [10] in the L2 setting. This is, in [10] the authors consider

the family of eigenfunctions normalized as to have the L2(BR)-norm equal to 1 and prove that, when
properly rescaled, they converge to the unique positive eigenfunction of the Laplacian in the unit ball
with L2(B1)-norm equal to 1.

In the present paper we are interested in the family HR of positive eigenfunctions normalized so that
the L∞(BR)-norm is 1. We prove that, when properly rescaled, they converge to the unique positive
eigenfunction of the Laplacian in the unit ball with the same normalization. The convergence is uniform
in the unit ball.

In order to get our result, we cannot use the compactness argument of [10] that holds only in Lp

for p < ∞. Instead, we use Arzelà–Ascoli. To this end, we get uniform estimates of the derivatives
of the rescaled eigenfunctions on compact subsets of the unit ball. The argument is delicate and uses a
precise decay, in terms of R, of HR in a neighborhood of the boundary of BR. This decay is obtained by
comparison with a supersolution that we construct to this end. In this way we obtain uniform convergence
on compact subsets of the unit ball.

The supersolution also allows us to prove that the rescaled eigenfunctions H̃R are smaller than any
positive constant in a neighborhood of ∂B1 if R is large. This, in turn, gives that the convergence is
uniform in the unit ball to a function that is continuous in the closure and vanishes on the boundary. This
limit function is therefore h1.

In this way, we get our main result in this section.
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Theorem 3.1. Let L the operator in (1.2). Let ΛR ∈ R, HR ∈ C(BR), HR = 0 in R
N \ BR, be the

unique solution to⎧⎪⎨⎪⎩
−LHR(x) = ΛRHR(x) in BR,

HR(x) = 0 in R
N \ BR,

HR(x) > 0 in BR

obtained in [10], with the normalization 0 < HR(x) � 1 = ‖HR‖L∞(BR) for x ∈ BR.
Let H̃R(x) = HR(Rx) for x ∈ B1 and h1 ∈ C∞(B1) ∩ C(B1) the positive eigenfunction of the

Laplacian in the unit ball such that ‖h1‖L∞(B1) = 1. Then,

H̃R → h1 (R → ∞) uniformly in B1.

For the proof of this theorem we need a couple of lemmas.

Lemma 3.2. Let Rn → ∞ be such that H̃Rn
→ H in L1

loc(B1). Then H is a solution to,{
−�H = λ1H in B1,

H = 0 on ∂B1.

Proof. In the sequel we will denote for any R > 0, by JR(x) = RNJ(Rx).
In order to prove that H is a weak solution to the equation, we let φ ∈ C∞

0 (B1). Then, we observe that
by the radial symmetry of the kernel J and Taylor’s expansion up to the 4th order,

R2
(
(JR ∗ φ)(x) − φ(x)

) = A(J )�φ(x) + O
(
R−2

)
,

where the term O(R−2) is bounded by CR−2‖D4φ‖L∞
∫

J (z)|z|4 dz with C a universal constant. Thus,
using that (JR ∗ H̃R)(x) − H̃R(x) = −ΛRH̃R(x),

A(J )

∫
B1

H(x)�φ(x) dx

= A(J )

∫
B1

H̃Rn
(x)�φ(x) dx + A(J )

∫
B1

(
H(x) − H̃Rn

(x)
)
�φ(x) dx

=
∫

B1

H̃Rn
(x)R2

n

(
(JRn

∗ φ)(x) − φ(x)
)

dx + A(J )

∫
B1

(
H(x) − H̃Rn

(x)
)
�φ(x) dx

−
∫

B1

H̃Rn
(x)O

(
R−2

n

)
dx

= R2
n

∫
B1

(
(JRn

∗ H̃Rn
)(x) − H̃Rn

(x)
)
φ(x) dx

+ A(J )

∫
B1

(
H(x) − H̃Rn

(x)
)
�φ(x) dx −

∫
B1

H̃Rn
(x)O

(
R−2

n

)
dx
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= −R2
nΛRn

∫
B1

H̃Rn
(x)φ(x) dx + A(J )

∫
B1

(
H(x) − H̃Rn

(x)
)
�φ(x) dx

−
∫

B1

H̃Rn
(x)O

(
R−2

n

)
dx.

Since H̃Rn
→ H strongly in L1

loc(B1), ‖H̃R‖L∞ � 1, φ ∈ C∞
0 (RN) and R2ΛR → A(J )λ1 as R → ∞,

by taking limit as n tends to infinity we obtain,

A(J )

∫
B1

H(x)�φ(x) dx = −λ1A(J )

∫
B1

H(x)φ(x) dx,

that is, H satisfies the equation −�H = λ1H in B1. �

Our next result is the construction of a barrier for HR.

Lemma 3.3. Let h1 be the positive eigenfunction corresponding to the first eigenvalue λ1 of the Lapla-
cian in B1 with Dirichlet boundary conditions and the normalization 1 = maxx∈B1 h1(x). Let us consider
the function

v(x) = h1

(
x

2R

)
for x ∈ B2R.

There exists C > 0, R1 > d such that

CLv(x) � LHR in BR if R � R1.

Proof. Assume R > d. By using Taylor’s expansion and the symmetry of J we get for x ∈ BR,

Lv(x) = A(J )�v(x) + O
(

max
|β|=4

∥∥Dβv
∥∥

L∞(BR+d )

)
.

Then,

Lv = A(J )

4
R−2�h1

(
x

2R

)
+ O

(
R−4

)
= −λ1

A(J )

4
R−2h1

(
x

2R

)
+ O

(
R−4

)
� −1

8
λ1A(J )R−2h1

(
x

2R

)
in BR (3.1)

if R is large.
Here we have used that there exists a positive constant c such that,

c < h1

(
x

2R

)
, x ∈ BR. (3.2)
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Finally, since λ1A(J )R−2 = ΛR(1 + o(1)), we get for R large enough,

Lv � − 1

16
ΛRh1

(
x

2R

)
� − c

16
ΛR � − c

16
ΛRHR = c

16
LHR

since 0 � HR � 1. �

Recall that h1 is radially symmetric, radially decreasing, smooth with h1(0) = 1. Let η such that
h1(x) = η(|x|).

Now we use the supersolution constructed in Lemma 3.3 in order to bound HR. There holds,

Lemma 3.4. Let η(|x|) = h1(x) with h1 as in Lemma 3.3. There exist constants C, C0 > 0 and R0 > 0
such that,

HR(x) � C

{
η

( |x|
2R

)
− η

(
1

2

)
+ C0

R

}
if R � R0.

Proof. In Lemma 3.3 we found a constant C > 0 and R1 > 0 such that, for any C0 ∈ R, R � R1, the
function

w(x) = C

{
η

( |x|
2R

)
− η

(
1

2

)
+ C0

R

}
satisfies

Lw � LHR in BR.

In order to be able to apply the comparison principle we need to show that, for some constant C0, there
holds that

w � 0 in
{
x ∈ RN \ BR/ dist(x, BR) < d

} = {
R � |x| < R + d

}
. (3.3)

And, in fact (3.3) holds if C0 � d‖η′‖L∞(0,1) and R � R1 > d.
Finally, by applying the comparison principle, the lemma is proved. �

From this lemma we get the following corollary that will be used to bound the derivatives of H̃R.

Corollary 3.5. There exists a constant K > 0 such that for R � R1 > d,

J ∗ HR � K

R
in

{
R � |x| < R + d

}
.

Proof. Let R � |x| < R+d. Then, if J (x−y)HR(y) 	= 0, there holds that R−d � |y| < R. Therefore,

HR(y) � w(y) = C

{
η

( |y|
2R

)
− η

(
1

2

)
+ C0

R

}
� K

R
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for a certain constant K > 0 and,

(J ∗ HR)(x) =
∫

J (x − y)HR(y) dy � K

R
. �

In order to prove our main result in this section, we will use an integral representation formula for HR.
To this end, let us recall some results on the fundamental solution to the operator ∂t − L.

In [6] the authors found that the fundamental solution of the nonlocal operator ∂t − L in the whole
space, is

F(x, t) = e−t δ(x) + ω(x, t),

where δ is the Dirac mass at the origin in R
N and ω is a smooth function.

Then, in [17] pointwise and integral estimates for ω and its derivatives where obtained. In particular,

∣∣∇ω(x, t)
∣∣ � C

t

|x|N+3
(3.4)

and ∫
RN

∣∣∇ω(x, t)
∣∣ � Ct−1/2. (3.5)

We can now prove our main result in this section.

Proof of Theorem 3.1. The proof follows from the Arzelá–Ascoli theorem.
In order to get uniform estimates of the derivatives of H̃R let us observe that the first eigenfunc-

tion of (2.3) is the unique bounded solution of the following nonhomogeneous equation defined in the
whole R

N ,{
wt − Lw = ΛRw − XBc

R
(J ∗ w) in R

N × (0, ∞),

w(x, 0) = HR(x) in R
N.

(3.6)

As the solution of (3.6) is defined in the whole space, it can be expressed in terms of the fundamental
solution F = F(x, t) by means of the variation of constants formula. Thus, for t � 0 we have

HR(x) = e−tHR(x) +
∫
RN

ω(x − y, t)HR(y) dy + ΛR

(∫ t

0
e−(t−s) ds

)
HR(x)

−
(∫ t

0
e−(t−s) ds

)
XBc

R
(x)(J ∗ HR)(x) + ΛR

∫ t

0

∫
RN

ω(x − y, t − s)HR(y) dy ds

−
∫ t

0

∫
Bc

R

ω(x − y, t − s)(J ∗ HR)(y) dy ds. (3.7)
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For x ∈ BR, there holds that XBc
R
(x) = 0. Thus, we can rewrite (3.7) for x ∈ BR as,

(
1 − e−t

)
(1 − ΛR)HR(x)

=
∫
RN

ω(x − y, t)HR(y) dy + ΛR

∫ t

0

∫
RN

ω(x − y, t − s)HR(y) dy ds

−
∫ t

0

∫
Bc

R

ω(x − y, t − s)(J ∗ HR)(y) dy ds. (3.8)

Observe that we are free to select the parameter t in expression (3.8).
Let us now rescale the identity (3.8). We have,

(
1 − e−t

)
(1 − ΛR)H̃R(x)

=
∫
RN

ω(Rx − y, t)HR(y) dy + ΛR

∫ t

0

∫
RN

ω(Rx − y, t − s)HR(y) dy ds

−
∫ t

0

∫
Bc

R

ω(Rx − y, t − s)(J ∗ HR)(y) dy ds

:= (i) + (ii) − (iii).

In order to bound the derivatives of (i), (ii) and (iii) we will choose the value t = R2. First, let us
estimate the derivative of (i). By (3.5), since 0 � HR � 1, it follows that

∣∣∣∣∇ ∫
RN

ω(Rx − y, t)HR(y) dy

∣∣∣∣ = R

∣∣∣∣∫
RN

∇ω(Rx − y, t)HR(y) dy

∣∣∣∣
� R

∫
RN

∣∣∇ω(y, t)
∣∣ dy

� CRt−1/2 = C. (3.9)

Similarly, since ΛR � CR−2,

ΛR

∣∣∣∣∇ ∫ t

0

∫
RN

ω(Rx − y, t − s)HR(y) dy ds

∣∣∣∣
� ΛRR

∫ t

0

∫
RN

∣∣∇ω(y, t − s)
∣∣ dy ds

� CR−1
∫ t

0
(t − s)−1/2 ds

� CR−1t1/2 = C. (3.10)
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Now, by using the pointwise estimate (3.4), Corollary 3.5 and the fact that supp(J ∗ HR) = BR+d we
can bound the derivative of (iii) as∣∣∣∣∇ ∫ t

0

∫
Bc

R

ω(Rx − y, t − s)(J ∗ HR)(y) dy ds

∣∣∣∣
= R

∣∣∣∣∫ t

0

∫
Bc

R

∇ω(Rx − y, t − s)(J ∗ HR)(y) dy ds

∣∣∣∣
� C

∣∣∣∣∫ t

0

∫
R<|y|<R+d

t − s

|Rx − y|N+3
dy ds

∣∣∣∣
� Ct2

∫
R<|y|<R+d

1

|Rx − y|N+3
dy.

Assume now, |x| � r with 0 < r < 1. Then, if |y| > R we get that |Rx − y| � R(1 − r) and then,∣∣∣∣∇ ∫ t

0

∫
Bc

R

ω(x − y, t − s)(J ∗ HR)(y) dy ds

∣∣∣∣
� CR−N−3t2 1

(1 − r)N+3

∣∣{R < |y| < R + d
}∣∣

� CrdR−4t2 = Crd. (3.11)

Thus, since (1 − e−R2
)(1 − ΛR) � α0 > 0 for R � R0, we conclude that for every 0 < r < 1 there

exists C > 0 such that,

sup
|x|�r

∣∣∇H̃R(x)
∣∣ � C

if R � R0.
We can apply Arzelà–Ascoli on every ball Br with 0 < r < 1 to get, for every sequence Rn →

∞ a subsequence H̃Rnk
uniformly convergent in Br . Then, a diagonal argument gives a subsequence

uniformly convergent on every compact subset of B1 to a function H . By the previous lemmas, we know
that H is a solution to

−�H = λ1H in B1.

Moreover, 0 � H � 1. Let us see that H ∈ C(B1) with H = 0 on ∂B1. In fact, we show that the
subsequence H̃Rnk

converging to H uniformly on compact subsets of B1 is actually uniformly convergent
in B1. In fact, we use Lemma 3.4 to get for ε > 0,

H̃R(x) � C

(
η

( |x|
2

)
− η

(
1

2

)
+ C0

R

)
<

ε

2

if 1 − |x| < δ0 and R � R0.
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On the other hand, for every x ∈ B1, by taking limit as k → ∞ we find that,

H(x) � C

(
η

( |x|
2

)
− η

(
1

2

))
<

ε

2

if 1 − |x| < δ0.
Observe that, in particular, H ∈ C(B1) with H = 0 on ∂B1.
Then,∣∣H̃Rnk

(x) − H(x)
∣∣ � ε if |x| > 1 − δ0, k � k0.

On the other hand, due to the uniform convergence of H̃Rnk
to H in B1−δ0 ,∣∣H̃Rnk

(x) − H(x)
∣∣ � ε if |x| � 1 − δ0, k � k1.

So that, the convergence is uniform in B1, H ∈ C(B1) with H = 0 on ∂B1. So that, H = h1 is
independent of the subsequence and the theorem is proved. �

4. Back to the evolutionary problem: Construction of a barrier

In this section we construct a barrier for the nonlocal problem which is similar to the one constructed
in [12] for the Laplacian. This barrier is a function of separated variables involving the eigenfunctions
HR studied in Section 3.

In order to be able to further analyze our solution u, we state a result that is needed because of the lack
of a regularizing effect of the nonlocal diffusion equation.

Lemma 4.1. Let 0 � u0 ∈ L∞, u0 	≡ 0. Then, for every R > 0, t > 0,

inf
x∈BR

u(x, t) > 0. (4.1)

Proof. We recall some results that can be found, for instance, in [16]. First, u ∈ L∞ and bounded by
‖u0‖∞. Moreover, u � 0 since v ≡ 0 is a solution to the equation and a comparison principle for
bounded solutions holds (see, for instance [14]).

Moreover, u(x, t) > 0 for every x ∈ R
N , t > 0. In fact, let A � 1 + ‖u0‖p−1

∞ . Then, since 0 � u �
‖u0‖∞,

ut + Au � ut + u + up = J ∗ u.

Thus,

u(x, t) � e−Atu0(x) +
∫ t

0
e−A(t−s)

(
J ∗ u(·, s))(x) dx (4.2)
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so that, if u(x, t) = 0 for some x ∈ R
N , t > 0 there holds,

0 �
∫ t

0
e−A(t−s)

(
J ∗ u(·, s))(x) dx � 0.

We deduce that u(y, s) = 0 in Bd(x) × (0, t) and, since RN is connected, a continuation argument gives
that u = 0 in R

N × (0, t). But, by (4.2),

u(x, t) � e−Atu0(x)

and u0 	≡ 0.
Therefore, u(x, t) > 0 in R

N × (0, ∞).
Let us now prove (4.1). If not, there exists a sequence {xn} ⊂ BR such that u(xn, t) → 0. Without

loss of generality we may assume that xn → x̄ ∈ BR. Going back to (4.2) and using that J ∗ u(·, s) is a
continuous function in R

N we get

0 ← u(xn, t) �
∫ t

0
e−A(t−s)

(
J ∗ u(·, s))(xn) dx →

∫ t

0
e−A(t−s)

(
J ∗ u(·, s))(x̄) dx.

We deduce that u = 0 in Bd(x̄) × (0, t), a contradiction. �

Now, we construct the barrier.

Lemma 4.2. Let ΛR be the principal eigenvalue of (2.3) in the ball BR and HR the positive eigen-
function with the normalization ‖HR‖L∞(BR) = 1. Assume 0 � u0 ∈ L∞(RN) and let u be the unique
bounded solution of (1.1). Then, the following inequality holds in BR × (0, +∞):

u(x, t) � ψR(t)HR(x), (4.3)

where ψR is the solution to⎧⎪⎪⎨⎪⎪⎩
d

dt
ψR + ΛRψR + ψ

p

R = 0 in (0, ∞),

ψR(0) = c = inf
x∈BR

u0(x)

HR(x)
.

(4.4)

Proof. We set w(x, t) = ψR(t)HR(x). Then, for x ∈ BR,

wt − Lw + wp = HR

d

dt
ψR − ψRLHR + ψ

p

RH
p

R

= HR

d

dt
ψR + ψRΛRHR + ψ

p

RH
p

R

= HR

(
d

dt
ψR + ΛRψR + ψ

p

R

)
+ HRψR

(
(HRψR)p−1 − ψ

p−1
R

)
.
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Since ψR satisfies (4.4), 0 � HR � 1 and p � 1 we deduce that,

wt − Lw + wp � 0 for x ∈ BR.

As w(x, 0) = ψR(0)HR(x) � u0(x) and w(x, t) = 0 in Bc
R × (0, ∞), we deduce by the comparison

principle for sub- and super-solutions on bounded sets that,

w(x, t) � u(x, t). �

Remark 4.3. The function ψ can be computed explicitly (see [12]). In fact, if c > 0,

ψR(t) =
(

ΛR

(1 + c1−pΛR)eΛR(p−1)t − 1

)1/(p−1)

. (4.5)

The following technical lemma was proved in [12]. This result will be used later on in Section 5 in
order to obtain the region where we can identify the asymptotic behavior of u.

Lemma 4.4 (Gmira and Véron, Lemma 2.2 [12]). Set ϕ : R+ → R
+ such that

lim
y→∞ y2ϕ(y) = ∞.

Then, there exists a nondecreasing function R from R
+ into R

+ such that

lim
y→∞

y

R2(y)
= 0, lim

y→∞ yϕ
(
R(y)

) = ∞. (4.6)

Remark 4.5. In [12] the function ϕ was assumed continuous. But it is easy to see that this assumption
is not needed.

Now, we prove a key lemma. Once again the goal is to establish a lower bound for u(·, t) by con-
structing an appropriate auxiliary function ϕ(R). This function will be used as an initial condition for
the function ψR from Lemma 4.2 in the proof of Theorem 5.1.

Proposition 4.6. Suppose 0 � u0 ∈ L∞(RN) is such that

|x|2/(p−1)u0(x) → ∞ as |x| → ∞ (4.7)

and let u be the bounded solution to (1.1). Then, for any t > 0 the following equivalent properties hold:

(i) lim|x|→∞ |x|2/(p−1)u(x, t) = ∞.
(ii) limR→∞ R2/(p−1) inf|x|�R u(x, t) = ∞.

(iii) There exists a positive, nonincreasing, real-valued function ϕ such that

lim
r→∞ r2/(p−1)ϕ(r) = ∞ (4.8)

and

u(x, t) � ϕ(R)HR(x) ∀x ∈ BR.
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Proof. By (4.2), for every t > 0,

|x|2/(p−1)u(x, t) � e−At |x|2/(p−1)u0(x) → ∞ as |x| → ∞.

Thus, (i) holds.
Let us see that (i) ⇒ (ii).
If not, there exist Rn → ∞ and a constant C > 0 such that

R2/(p−1)
n inf

BRn

u(·, t) � C.

This in turn implies that there exists xn ∈ BRn
such that

R2/(p−1)
n u(xn, t) � 2C. (4.9)

If there exist R0 > 0 and a subsequence Rnk
such that {xnk

} ⊂ BR0 we would have, by (4.9) and
Lemma 4.1,

2C � R2/(p−1)
nk

u(xnk
, t) � R2/(p−1)

nk
inf
BR0

u(·, t) → ∞ as k → ∞

which is a contradiction. Therefore, |xn| → ∞ as n → ∞. But then, since xn ∈ BRn
, by (i),

2C � R2/(p−1)
n u(xn, t) � |xn|2/(p−1)u(xn, t) → ∞ as n → ∞

which again is a contradiction. So, (ii) holds.
(ii) ⇒ (iii). We define for R > 0

ϕ(R) = inf
|x|�R

u(x, t)

HR(x)
, (4.10)

where HR is the positive eigenfunction of (2.3) with ‖HR‖∞ = 1. As u(x, t)/HR � u(x, t) in BR, there
holds that ϕ(R) is positive.

From (4.10) we have in BR,

u(x, t) � ϕ(R)HR(x),

and, as 0 � HR(x) � 1,

R2/(p−1)ϕ(R) � R2/(p−1) inf
|x|�R

u(x, t) → ∞ as R → ∞,

by (ii). So that, (iii) holds.
(iii) ⇒ (ii). In fact, by Theorem 3.1 we know that

H̃R(x) → h1 uniformly in B1/2.
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Since h1(x) � β > 0 in B1/2, there holds that

H̃R(x) � β

2
in B1/2

if R � R0.
This is,

HR(x) � β

2
in BR/2

if R � R0. Hence,

u(x, t) � ϕ(R)HR(x) � β

2
ϕ(R) in BR/2

if R � R0.
Multiplying by R2/(p−1), taking infimum over BR/2 and letting R → ∞ gives (ii).
(ii) trivially implies (i). �

Remark 4.7. Observe that the function ϕ(R) depends on t > 0.

5. Main result

In this section we prove our main result. This is, we obtain the large time behavior of u in the subcrit-
ical case 1 < p < 1 + 2/α.

Theorem 5.1. Suppose 0 � u0 ∈ L∞(RN) satisfies (4.7). Let u(x, t) be the bounded solution of (1.1).
Then,

lim
t→∞ t1/(p−1)u(x, t) =

(
1

p − 1

)1/(p−1)

,

uniformly on the sets

Ek = {
x ∈ R

N : |x| � k
√

t
}
,

where k is an arbitrary constant.

Proof. From Proposition 4.6, by considering u(x, t) for t � t0 > 0 we deduce that there is no loss of
generality in assuming that there exists a nondecreasing function ϕ : R+ → R

+ satisfying (4.8) such
that,

u0(x) � ϕ(R)HR(x) ∀x ∈ BR.
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From Lemma 4.2 we have that u(x, t) � HR(x)ψR(t) in BR × R
+, where ψR is the solution of⎧⎨⎩

d

dt
ψR + ΛRψR + ψ

p

R = 0 in (0, ∞),

ψR(0) = ϕ(R).
(5.1)

By (2.4) the principal eigenvalue of (2.3) can be written in the form

ΛR = CR

λ1

R2
as R → +∞, (5.2)

where λ1 is the principal eigenvalue of (2.1) and CR → A(J ) as R → ∞ with A(J ) given by (2.5). By
using (5.2) and (4.5) we have

t1/(p−1)ψR(t) = t1/(p−1)

(
ΛR

(1 + ϕ1−p(R)ΛR)eΛR(p−1)t − 1

)1/(p−1)

= (CRtλ1R
−2)1/(p−1)e−CRλ1tR

−2

(1 + CRλ1ϕ1−p(R)R−2 − e−CRλ1(p−1)tR−2
)1/(p−1)

.

By using the Taylor expansion for e−CRλ1(p−1)tR−2
at the origin we get,

t1/(p−1)ψR(t) =
(

(CRtλ1)/R
2

CRλ1/(R2ϕp−1(R)) + (CRλ1(p − 1)t)/R2 + O(R−4t2)

)1/(p−1)

e−CRλ1tR
−2

.

(5.3)

Now, as limR→∞ R2ϕp−1(R) = ∞ we deduce from Lemma 4.4 that there exists a nondecreasing
function t �→ R(t) such that

lim
t→∞

t

R2(t)
= 0 and lim

t→∞ tϕp−1
(
R(t)

) = ∞. (5.4)

Replacing R by R(t) in (5.3) and using (5.4) yields

lim
t→∞ t1/(p−1)ψR(t)(t) =

(
1

p − 1

)1/(p−1)

.

If we consider x such that |x|√
t
� k for some constant k, we have

lim
t→∞

|x|
R(t)

= lim
t→∞

|x|√
t

√
t

R(t)
= 0. (5.5)

Since w(x, t) = ( 1
(p−1)t

)1/(p−1) is a supersolution for t > 0, and u is bounded there holds that,(
1

p − 1

)1/(p−1)

� t1/(p−1)u(x, t) � t1/(p−1)ψR(t)(t)HR(t)(x). (5.6)
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Now, let us prove that

lim
t→∞ HR(t)(x) = 1 (5.7)

uniformly on |x| � k
√

t for all k > 0. In fact, from the uniform convergence on B1 obtained in Theo-
rem 3.1, for every ε > 0 there exists t1 > 0 such that,∣∣H̃R(t)(y) − h1(y)

∣∣ < ε if |y| � 1 and t � t1.

On the other hand, if |x| � k
√

t and we put x = R(t)y, we get that

|y| � k
√

t

R(t)
� 1 if t � t2

and consequently, if |x| � k
√

t∣∣∣∣HR(t)(x) − h1

(
x

R(t)

)∣∣∣∣ = ∣∣H̃R(t)(y) − h1(y)
∣∣ < ε if t � max{t1, t2}. (5.8)

From the continuity of h1 it follows that,∣∣∣∣h1

(
x

R(t)

)
− h1(0)

∣∣∣∣ � ε if |x| � k
√

t and t � t3. (5.9)

Hence, from (5.8) and (5.9) we obtain that,∣∣HR(t)(x) − h1(0)
∣∣ < 2ε if |x| � k

√
t and t � {t1, t2, t3}.

Since h1(0) = 1, (5.7) follows.
Taking limit as t → ∞ in (5.6) and using (5.7) we obtain that

lim
t→∞ t1/(p−1)u(x, t) =

(
1

p − 1

)1/(p−1)

uniformly on Ek = {x ∈ R
N : |x| � k

√
t} and the proof is finished. �
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